skip to main content


Search for: All records

Creators/Authors contains: "Hönisch, Bärbel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The boron isotope (δ11B) proxy for seawater pH is a tried and tested means to reconstruct atmospheric CO2in the geologic past, but uncertainty remains over how to treat species‐specific calibrations that link foraminiferal δ11B to pH estimates prior to 22 My. In addition, no δ11B‐based reconstructions of atmospheric CO2exist for wide swaths of the Oligocene (33–23 Ma), and large variability in CO2reconstructions during this epoch based on other proxy evidence leaves climate evolution during this period relatively unconstrained. To add to our understanding of Oligocene and early Miocene climate, we generated new atmospheric CO2estimates from new δ11B data from fossil shells of surface‐dwelling planktic foraminifera from the mid‐Oligocene to early Miocene (∼28–18 Ma). We estimate atmospheric CO2of ∼680 ppm for the mid‐Oligocene, which then evolves to fluctuate between ∼500–570 ppm during the late Oligocene and between ∼420–700 ppm in the early Miocene. These estimates tend to trend higher than Oligo‐Miocene CO2estimates from other proxies, although we observe good proxy agreement in the late Oligocene. Reconstructions of CO2fall lower than estimates from paleoclimate model simulations in the early Miocene and mid Oligocene, which indicates that more proxy and/or model refinement is needed for these periods. Our species cross‐calibrations, assessing δ11B, Mg/Ca, δ18O, and δ13C, are able to pinpoint and evaluate small differences in the geochemistry of surface‐dwelling planktic foraminifera, lending confidence to paleoceanographers applying this approach even further back in time.

     
    more » « less
  2. Abstract

    Foraminiferal Mg/Ca has proven to be a powerful paleothermometer for reconstructing past sea‐surface temperature, which, among other applications, is a critical parameter for boron isotope reconstructions of past surface ocean pH and PCO2. However, recent laboratory culture studies indicate seawater pH and the total dissolved inorganic carbon content (DIC) may both exert a significant additional control on foraminiferal Mg/Ca, likely influencing paleotemperature records as a result of seawater chemistry evolution on geologic timescales. In addition, the seawater Mg/Ca composition (Mg/Casw) has been shown to reduce the sensitivity of foraminiferal Mg/Ca to temperature and possibly its sensitivity to the carbonate system as well. Here we present new Mg/Ca data from laboratory culture experiments with living planktic foraminifera—Globigerinoides ruber(p),Trilobatus sacculifer, andOrbulina universa— grown under a range of different pH and/or seawater DIC conditions and in low Mg/Caswto mimic the chemical composition of the Paleocene ocean. We also conducted targeted [Ca] experiments to help define Mg/Cacalcite–Mg/Caswrelationships for each species and conducted new pH experiments withG.bulloides. We find that pH effects on foraminiferal Mg/Ca are reduced or absent at Mg/Casw = 1.5 mol/mol in all three species, and thatT.sacculiferis generally insensitive to variable DIC and pH, making it the ideal species for Mg/Ca SST reconstructions back to 20 Ma. We apply our newT.sacculifercalibration to a Middle Miocene Mg/Ca record and provide recommendations for interpreting Mg/Ca records from extinct species.

     
    more » « less
  3. The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO2) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO2beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO2record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO2thresholds in biological and cryosphere evolution.

     
    more » « less
    Free, publicly-accessible full text available December 8, 2024
  4. The Paleocene–Eocene Thermal Maximum (PETM) (55.6 Mya) was a geologically rapid carbon-release event that is considered the closest natural analog to anthropogenic CO2emissions. Recent work has used boron-based proxies in planktic foraminifera to characterize the extent of surface-ocean acidification that occurred during the event. However, seawater acidity alone provides an incomplete constraint on the nature and source of carbon release. Here, we apply previously undescribed culture calibrations for the B/Ca proxy in planktic foraminifera and use them to calculate relative changes in seawater-dissolved inorganic carbon (DIC) concentration, surmising that Pacific surface-ocean DIC increased by+1,010646+1,415µmol/kg during the peak-PETM. Making reasonable assumptions for the pre-PETM oceanic DIC inventory, we provide a fully data-driven estimate of the PETM carbon source. Our reconstruction yields a mean source carbon δ13C of −10‰ and a mean increase in the oceanic C inventory of +14,900 petagrams of carbon (PgC), pointing to volcanic CO2emissions as the main carbon source responsible for PETM warming.

     
    more » « less
  5. null (Ed.)
    As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted. 
    more » « less
  6. Abstract

    In the early Pleistocene, global temperature cycles predominantly varied with ~41‐kyr (obliquity‐scale) periodicity. Atmospheric greenhouse gas concentrations likely played a role in these climate cycles; marine sediments provide an indirect geochemical means to estimate early Pleistocene CO2. Here we present a boron isotope‐based record of continuous high‐resolution surface ocean pH and inferred atmospheric CO2changes. Our results show that, within a window of time in the early Pleistocene (1.38–1.54 Ma), pCO2varied with obliquity, confirming that, analogous to late Pleistocene conditions, the carbon cycle and climate covaried at ~1.5 Ma. Pairing the reconstructed early Pleistocene pCO2amplitude (92 ± 13 μatm) with a comparably smaller global surface temperature glacial/interglacial amplitude (3.0 ± 0.5 K) yields a surface temperature change to CO2radiative forcing ratio ofS[CO2]~0.75 (±0.5) °C−1·W−1·m−2, as compared to the late PleistoceneS[CO2]value of ~1.75 (±0.6) °C−1·W−1·m−2. This direct comparison of pCO2and temperature implicitly incorporates the large ice sheet forcing as an internal feedback and is not directly applicable to future warming. We evaluate this result with a simple climate model and show that the presumably thinner, though extensive, northern hemisphere ice sheets would increase surface temperature sensitivity to radiative forcing. Thus, the mechanism to dampen actual temperature variability in the early Pleistocene more likely lies with Southern Ocean circulation dynamics or antiphase hemispheric forcing. We also compile this new carbon dioxide record with published Plio‐Pleistocene δ11B records using consistent boundary conditions and explore potential reasons for the discrepancy between Pliocene pCO2based on different planktic foraminifera.

     
    more » « less